

Page 1 of 3

Ember+ Getting started

Talking Ember+ to Junger equipment

The Ember+ protocol was designed by Co. l-s-b : http://www.l-s-b.de/en.html
(see also the product VSM - Virtual Studio Manager and panel solutions).

For Junger Audio devices the implementation of the Ember+ protocol allows 3rd party application to gain access to
parameters of the respective device. But you can also receive status information and react to it.
These parameters are available via the GUI interface as well. So during implementation it might be a good idea to
have a parallel look at the GUI if you must understand the parameters in their context.

Usually the tasks are simple. E.g. load pre-defined settings (AKN presets), fire soft GPIs that on the other hand
may trigger actions inside the device or change a parameter like the gain of a processing channel to name a few.

You must implement an Ember+ client for your application (e.g. for a broadcast automation system) that
talks to the DUC. You will find Ember+ protocol details and implementation guide-lines as well as example
codes here : https://github.com/Lawo/ember-plus/

We suggest that you download a package to get hands-on experience. For a software developer it is no
virgin soil …
If you want to get hands on experience and you have a Junger device that has Ember+ protocol
implemented we would recommend installing the latest Ember+ viewer that comes with each package.

Here we want to briefly discuss as an example the control of Network triggers of the *AP series of 1RU
devices and how to load presets for the c8k system.

The triggers are set / reset by a control instance (e.g. VSM, a broadcast automation system or a mixing
desk). For the VSM system you may assign these triggers to virtual panels or to buttons of physical
hardware panels (e.g. LBP). A broadcast automation system on the other hand may bind these triggers to
events of a play list while a mixing desk may assign it to control buttons.

We have named the first two Network triggers "Soft GPI-1" and "Soft GPI-2".
They will be activated from the automation system if the respective event has been reached in the play
list or if the operating guy has pressed the respective control button.
EVENTS > Triggers > Sources = Network

Order number of the network trigger.

Label Label of that network trigger.
 It appears on the Configuration pane

as well as in the Ember+ tree.

Page 2 of 3

Ember+ Getting started

Lets have a look at the Ember+ tree to find the "Soft GPI-1" trigger.
At this stage we are using the Ember+ viewer tool (EmberPlusView.exe).
You must add a communication port :

If you have selected that port you must drill down to
 network_trigger :

The path is also shown at the
bottom of the main window :

As a value you will receive the trigger name "Soft GPI-1"
you have assigned to the first network trigger.

You may now fire that trigger by pressing <Change … > and <OK> in the pop-up.
This is similar to sending the trigger as a pulse (behaves like a push button).

But you may also give it a value of "1" to set the trigger and later on a "0" to reset it depending on
the functionality you need for a specific application (if you implement a toggle switch).

To change a parameter value a 3rd party Ember+ client implementation must provide the partial tree
up to idx_1 > network_trigger with a new value.

To round up this brief explanation, here is the way how to load presets of a specific module inside a c8k frame.
It is mandatory that you are familiar with how the c8k frame works and how you change things using the web GUI.

The screen shot below shows a c8k frame (IP address 10.110.59.32) containing 9 modules beside the frame
controller C8702 that runs the Ember+ server. In square brackets you will find the physical module address [N] that
was assigned by the person who did the frame configuration. The leading digits are the identifiers of the modules.
They are generated from the logical CAN bus address (N*2 +1) that is used internally by the frame controller to
communicate with the modules.

Page 3 of 3

Ember+ Getting started

If you now go to the LevelMagic processor C8086[02h] and drill down to the "commands" identifier you will see:
"apply preset parameter values" . These values are the preset numbers of that module
(refer to the PRESET page of the C8086 for details):
01 – 16 for DSP
17 – 32 for DOLBY METADATA
33 – 40 for SETUP

You can now change this value. Press <Change> and set a value between 1 and 40 and press <OK>.

Changing a parameter value [an excerpt from the implementation manual]

If a consumer wants to change a parameter value, he has to provide the partial tree and the new value.
The following sample shows what a "change network mask" request looks like. This is a code example from the
Ember+ manual.

root = GlowRootElementCollection::create();
device = new GlowNode(1);
network = new GlowNode(3);

mask = new GlowParameter(2);
mask->setValue(“255.255.252.0”);

root->insert(root->end(), device);
device->children()->insert(device->children()->end(), network);
network->children()->insert(network->children()->en d(), mask);

When a provider detects a parameter containing a value, he must treat this value like a value change request.
That's it.

